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Problem

R+X learns robot skills from long, unlabelled videos of humans
interacting with their environments SrRpes hanectony;
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1. Get Videos: Record Anywhere, from Multiple Views

Long, unlabeled video of a human doing
everyday activities

e Multiple rooms, multiple buildings, and even outside
e Chest camera, head camera or a third person camera



Long, unlabeled video of a human doing
everyday activities
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Single Unlabelled Video
with less
clutter/distractors
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Long, unlabeled video of a human doing
everyday activities



“Grab me something to

— — = Vision Language Model

drink” )

Long, unlabeled video of a human doing
everyday activities

Retrieve videos relevant to the prompt



R+X : Retrieval and Execution

Vision Language Model | <¢——— (Gemini Pro 1.5 flash

Long, unlabeled video of a human doing
everyday activities

Retrieve videos relevant to the prompt



Google Search as of 1/31/2025

gemini pro 1.5 flash free?

Is the Gemini 1.5 flash API free?

Free of charge

The Gemini API “free tier” is offered through the API service with lower rate limits for testing
purposes. Google Al Studio usage is completely free in all available countries. * Google Al
Studio usage is free of charge in all available regions.

e Gemini Developer API
https://ai.google.dev > pricing

Gemini API pricing | Google Al for Developers

Is Gemini 1.5 Pro free?
Can we fine tune a Gemini 1.5 flash?

How much is Gemini 1.5 flash vs pro?

And if you want to try out one of these new and updated models, here's how much you
should expect to pay. Google said that Gemini 1.5 Pro is $7 per 1 million tokens, and for
prompts up to 128K, it will be $3.50 per 1 million tokens. Gemini 1.5 Flash starts at 35
cents per 1 million tokens. way 14, 2024




Deploy Immediately to Novel Environments and Objects

Skills learned from videos can generalize to novel environments, filled with distractors, and even unseen test objects.
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Transformer Encoder
Patch + Position
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Get Keypoints in the remaining frames
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Rel Camera TF
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Differentiable Pose
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https://nianticlabs.github.io/mickey
[CVPR2024 Oral]

H-Demo: First Frame + Test Frame
Frame-1->Frame-2,........



https://nianticlabs.github.io/mickey
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HaMeR: Automatic non-hand frame elimination

Long, unlabeled video of a human doing
everyday activities
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HaMeR: Automatic non-hand frame elimination
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Human Hand -> Gripper

Examples of Different Hand to Gripper
Actions Heuristics
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Chest Camera Movement & Scene as a fixed point cloud

Gripper's trajectory before Stabilisation
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Gripper's trajectory after Stabilisation
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$ Octo: An Open-Source Generalist Robot Policy

Octo Model Team ] *
Dibya Ghosh*' Homer Walke*' Karl Pertsch*'-2 Kevin Black®' Oier Mees*' 3 D Traj fo r g rl p pe r move m e nt
Sudeep Dasari® Joey Hejna? Tobias Kreiman' CharlesXu' Jianlan Luo' You Liang Tan' — e o o o o o e e e o e o o o e o o oy
Lawrence Yunliang Chen' Pannag Sanketi* QuanVuong* Ted Xiao* Dorsa Sadigh? I . .
Chelsea Finn® Sergey Levine’ I No Finetunin g

*denotes equal contribution, listed in alphabetical order
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Hardware

IV. EXPERIMENTS Human 455
Human Video. We collect the human video #{ using an L —
Intel RealSense 455, worn by a human on their chest as
shown in Figure 1. To reduce downstream computational
time, we filter out each frame in which human hands are
not visible right after recording. As our robot is single-
armed, we limit ourselves to single hand tasks. However,
our method could identically be applied to bimanual settings
and dexterous manipulators. The video is collected in many
different rooms and buildings.

Robot Setup. At execution, we use a Sawyer robot
equipped with a RealSense 415 head-camera. The robot is
equipped with a two-fingered parallel gripper, the Robotiq
2F-85. As the robot is not mobile, we setup different scenes
in front of it with variations of the tasks recorded by the
human, placing several different distractors for each task,
while the human video was recorded in many different

Sawyer Robot with fixed base

99 mm x 20 mm x 23 mm

WristCam 415; not used in the work 21



Cloth in washing
machine

Kettle on stove Close microwave "'Cloth in basket Pick up phone Grasp can Turn on Jight

12 Everyday Tasks



Baselines

Method / Task Plate Push Wipe Beer Wash Box Kettle Micro. Basket Phone Can Light Avg.
R3M-DiffLang 0.5 0.7 0.4 0.7 0.5 0.5 0.4 0.8 0.7 0.4 0.7 0.3 0.55
Octo 0.5 0.8 0.5 0.6 0.5 0.5 0.4 0.7 0.6 0.4 0.6 0.3 0.53
R+X 0.6 0.8 0.7 0.8 0.6 0.7 0.6 0.8 0.7 0.7 0.8 0.6 0.7

10 episodes (runs)



Spatial, Language and Distractors generalisation
Gripper trajectories move from red to blue.

Hard Language Generalisation Hard Spatial Generalisation Distractors Generalisation
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Success Rate

1.0

0.8

Traig'e% on First 3 Tasks

Can R+X learn task sequentially over time?

Continual Learning: R+X

BN R+X: First 3 Tasks
. R+X: Second 3 Tasks

No finetuning
needed

Trained on Second 3 Tasks

1.0

0.8

Success Rate

Traigéod on First 3 Tasks

Continual Learning: R3M-DiffLang

EEm R3M-DiffLang: Second 3 Tasks

15 minutes
finetuning
needed

|

Trained on Second 3 Tasks

R R3M-DiffLang: First 3 Tasks

10 demos for 3 new tasks

Success Rate
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0.8

Traigeod on First 3 Tasks

Continual Learning: Octo

Bl Octo: First 3 Tasks
Emm Octo: Second 3 Tasks

25 minutes
finetuning
needed

—

Trained on Second 3 Tasks



Success rate on Seen & Unseen Objects

Performance on Seen and Unseen Objects

mmm Seen Objects
Unseen Objects

T

Pick Up Can Kettle on Stove Open Box Pick Up Phone Cloth in Basket Cloth in Wash Turn on Light
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Examples of keypoints extracted for the same tasks, but with
different views, settings, and target objects



Success Rate
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Success Rate as a Function of Retrieved Videos
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Takeaways
High time to use the reasoning capability of Large Multi Modal
Models (LMMs)

Leverage LMMs’ few-shot in context learning ability for
generalization purposes

Latent plan pre-training benefits multi-task learning.
[MimicPlay, LAPA]

Similarly, nuanced inputs like Keypoints are good for
generalization instead of direct RGBD or text
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Questions?
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