Distilled Feature Fields Enable Few-Shot Language-Guided Manipulation

CoRL 2023 **V**

Best Paper Award

Project: f3rm.github.io

Jishnu P Reading Group | IRVL 1/26/24

Authors

William Shen*

Jansen Wong

Ge Yang*
MIT, IAIFI

Leslie Pack Kaelbling MIT

Alan Yu MIT

Phillip Isola MIT

Coming back to the Title

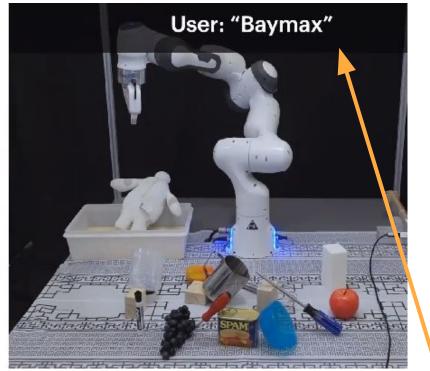
Distilled Feature Fields Enable Few-Shot Language-Guided Manipulation

F3RM: Feature Fields for Robot Manipulation

Motivation

Demonstration

Caterpillar Toy



Demo on one toy and user input asks to pick a different one

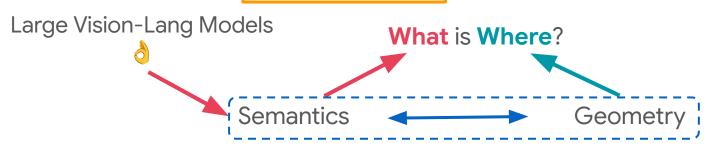
Is it possible that a robot is able to use a given example demo to generalize on given task?

Good Scene Representation is the key to **Open-Ended Generalization**

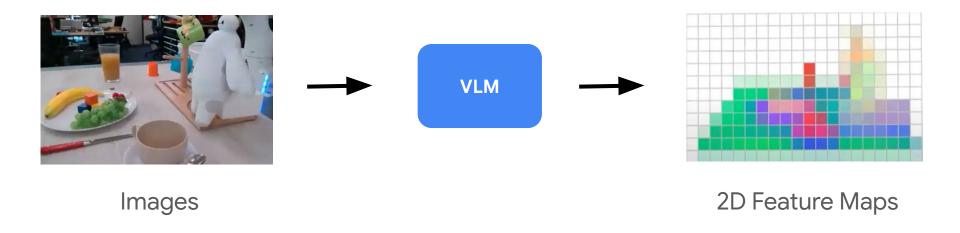
Scene Representation

Spring 2024: CS 4391 Introduction to Computer Vision

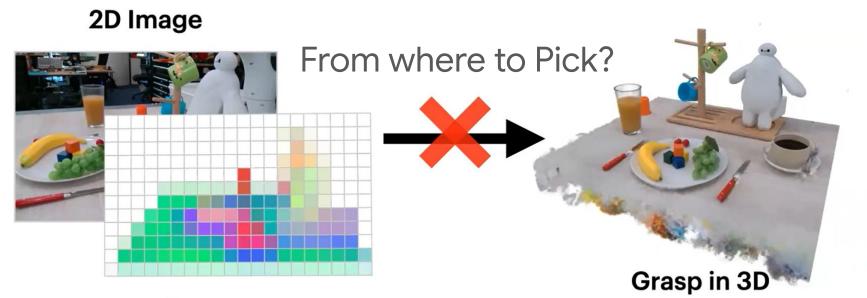
Understand the 3D world from 2D images



2D Foundation Models



2D Foundation Models

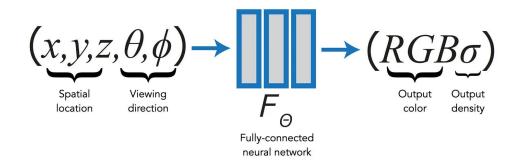


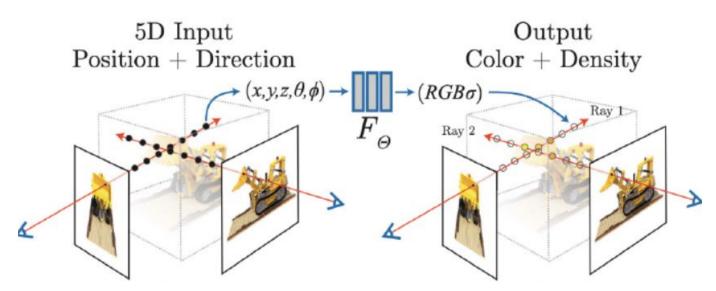
feature map

Semantics

3D Geometry

NeRF: Quick Intro



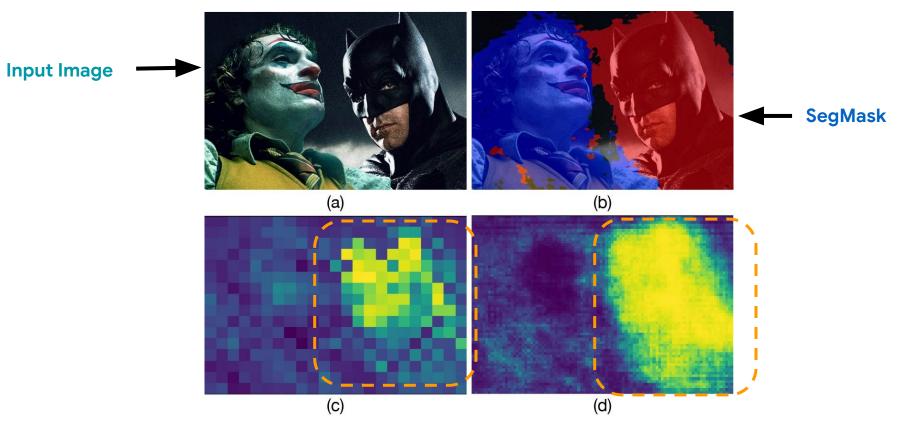


2D Foundation Models + NeRFs

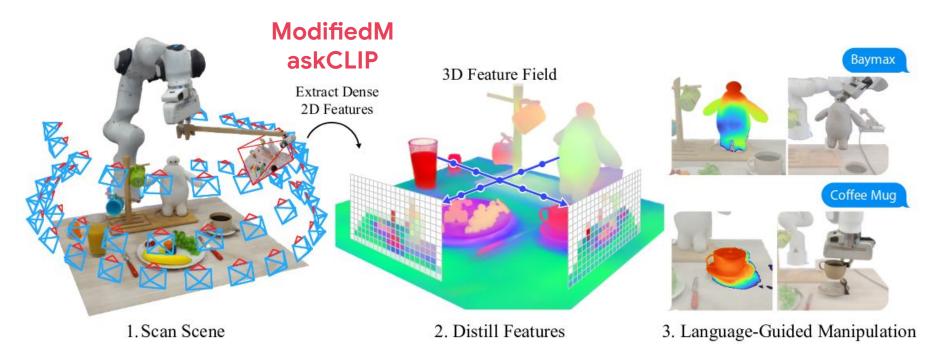
F3RM has 2 components

Scene Representation to enable Few Shot Language-guided Manipulation

MaskCLIP and MaskCLIP+



For Text Query: 'Batman' (c) MaskCLIP and (d) MaskCLIP+ show confidence maps Source: https://www.mmlab-ntu.com/project/maskclip



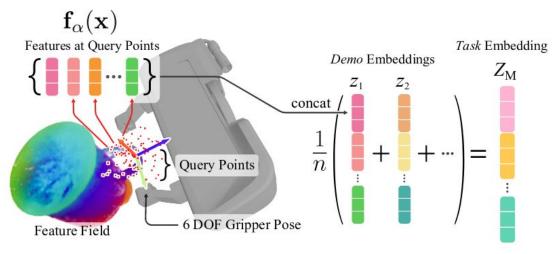
$$(\underbrace{x,y,z,\theta,\phi}_{\text{Spatial location}}) \rightarrow (\underbrace{RGB\sigma}_{\text{Output color density}}) + \text{Features}$$

$$F_{\Theta}$$
Fully-connected neural network

2. Feature Distillation

set of N 2D feature maps $\{\mathbf{I}_i^f\}_{i=1}^N$, where $\mathbf{I}^f = \mathbf{f}_{\text{vis}}(\mathbf{I})$ quadratic loss $\mathcal{L}_{\text{feat}} = \sum_{\mathbf{r} \in \mathcal{R}} \left\| \hat{\mathbf{F}}(\mathbf{r}) - \mathbf{I}^f(\mathbf{r}) \right\|_2^2$

Manipulation: Representing 6-DOF Poses



(a) Collect Demonstrations in VR

- (b) Sample Feature Vectors
- (c) Average Over *n* Demos

$$n=2$$

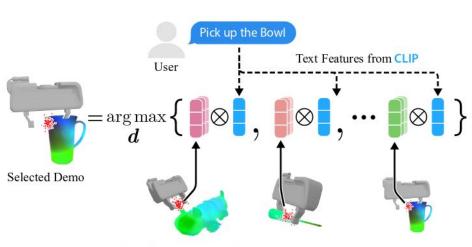
- Idea: Encode Gripper Pose in terms of 3D feature field
- Sample a fixed set of 100 points using 3D Gaussian Sampling in the Gripper Frame
- Mean and Variance are manually adjusted based on important context cues (obj. Body, free space)

$$\mathbf{f}_{\alpha}(\mathbf{x}) = \alpha(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}), \text{ where } \alpha(\mathbf{x}) = 1 - \exp(-\sigma(\mathbf{x}) \cdot \delta) \in (0, 1)$$

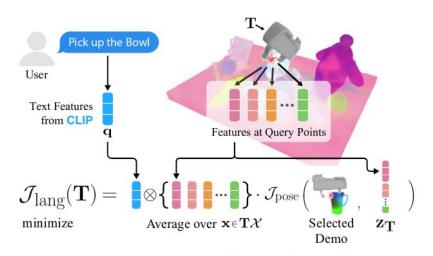
$$\{\mathbf{f}_{\alpha}(\mathbf{x}) \mid \mathbf{x} \in \mathbf{T}\mathcal{X}\} \quad \mathbf{T} \in SE(3)$$

$$\mathbf{T} = (\mathbf{R}, \mathbf{t}) \text{ in the world frame}$$

Pipeline for Language-Guided Manipulation



(a) Retrieving Demonstrations



(b) Language-Guided Pose Optimization

$$\mathcal{J}_{\text{pose}}(\mathbf{T}) = -\cos(\mathbf{z_T}, \mathbf{Z}_M)$$

Details

Figure 4: **Five Grasping and Place Tasks.** (a) grasping a mug by its lip or handle (Fig.2); (b) a screwdriver by the handle; (c) the caterpillar by its ears; and (d) placing a cup onto a drying rack. Gripper poses indicate one of two demonstrations.

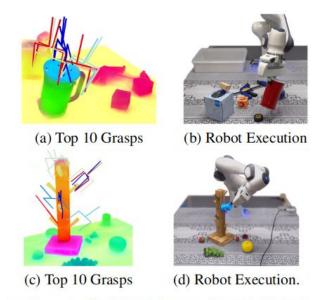


Figure 5: **Generalizing to Novel Objects.** (Top Row) Mug is much bigger than the ones used for demonstration. (Bottom Row) This rack has shorter pegs with a square cross-section. Demo rack is cylindrical (cf. Fig.4d).

Results

	Mug lip	Mug handle	Caterpillar ear	Screwdriver handle	Cup on rack	Total
MIRA [21]	1/10	2/10	6/10	3/10	3/10	15/50
Density	5/10	5/10	10/10	2/10	5/10	27/50
Intermediate	2/10	2/10	1/10	3/10	1/10	9/50
RGB	4/10	3/10	9/10	1/10	4/10	21/50
DINO VIT	5/10	4/10	8/10	6/10	8/10	31/50
CLIP ViT	7/10	7/10	8/10	6/10	6/10	34/50
CLIP ResNet	9/10	6/10	9/10	8/10	7/10	39/50

Table 1: Success rates on grasping and placing tasks. We compare the success rates over ten evaluation scenes given two demonstrations for each task. We consider a run successful if the robot grasps or places the correct corresponding object part for the task.

Color	7/10
Material	7/10
Relational	4/10
General	4/10
OOD	9/10
Total	31/50

Table 2: Success rates of Language-Guided Manipulation. Language query success rates across semantic categories.

Results

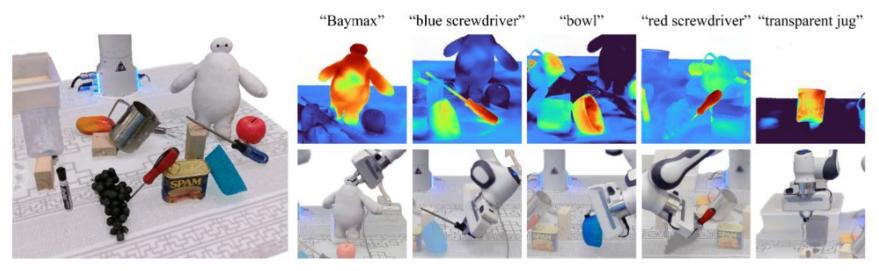
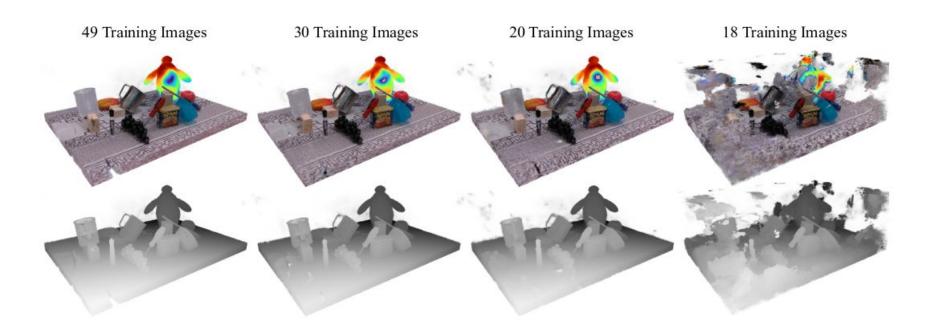


Figure 7: Language-Guided Manipulation Execution. (Top Row) Heatmaps given the language queries. (Bottom Row) Robot executing grasps sequentially without rescanning. CLIP can behave like a bag-of-words, as shown by the bleed to the blue bowl for "blue screwdriver."

Ablation Study



Limitations

Requires Dense Views
Optimization Per Scene
Storage

Questions?