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Problem Formulation. Build a generalist robotic foundation model from
human motion videos without action labels.




Related Work

Extend VLMs by fine-tuning them
on robotic action data to improve
physical grounding

Incorporate auxiliary objectives,
such as visual traces, language
reasoning paths

Construct a conversational-style
instruction dataset using robot
trajectory

Heavily rely on labeled action data
LAPA doesn’t need action data

Robot Policies
from Videos

LAPA

Unlike other works that leverage latent actions by converting ground-truth actions
into latent to capture better multimodality and task semantics, LAPA derives latent

actions directly from observations, not ground-truth actions.

Most raw videos do not contain any
action labels

Learn useful visual priors

Learn robot manipulation policies
by retargeting human motions to
robot motions. These works rely on
off-the-shelf models such as hand
pose estimators or motion capture
systems to retarget the human
motions directly to robot motions.
These works either learn only
task-specific policies or require
large in-domain perfectly aligned
human-robot data

Whereas LAPA allows learning the
mapping directly from perception
to control during pretraining.



Overview

X g o Pick up the milk and
Codebook of Latent Actions ¢ waterbottle put it in the sink
1. Latent Action Quantization 2. Latent Pretraining
Latent Action Pretraining » Action Finetuning
2 Pretraining Fine-tuning to map the latent actions

Stages to real robot actions



1. Latent Action Quantization

e Use a VQ-VAE based objective to capture the
discretized latent delta information between
consecutive frames in a video
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1. Latent Action Quantization

Embedding space ) z,(x) ~ q(zlx)

Encoder input Encoder Decoder

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The
output of the encoder z(z) is mapped to the nearest point eo. The gradient V, L (in red) will push the

Encoder output N 5 A >
encoder to change its output, which could alter the configuration in the next forward pass.

Decoder input

For in-depth details: Oord et al. Neural Discrete
Representation Learning, NeurlPS 2017

Decoder output

Aim: Learn to tokenize atomic actions without requiring predefined
action priors (e.g., end-effector positions, joint positions)
https://www.youtube.com/watch?v=_GD18kRQkOA
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1. Latent Action Quantization (Model)
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2. Latent Pretraining

e Perform behavior cloning
o by pretraining a Vision-Language Model
o to predict latent actions derived from the
VLM @ first stage. GT: (z, = f(x, x,,,))
o based on video observations and
z,_hat Goal: min || z,_hat - z I,
the water bottle
MLP-LAH

2. Latent Pretraining

Instead of using the existing
language model head of the
L. VLM, attach a separate
Vision Text latent action head

(MLP-LAH) of vocab size |C|.
VLM: 7B Large World Model (LWM-Chat-1M) EREOEE] Encoder

https://largeworldmodel.github.io T

Applied mechanism is given


https://largeworldmodel.github.io

3. Finetuning

VLAs pretrained to predict latent actions are not directly executable
on real-world robots since latent actions are not actual delta
end-effector actions or joint actions.
To map latent actions to actual robot actions, LAPA is finetuned LAPA
on a small set of labeled trajectories that contain ground truth actions
(delta end-effector)

o  Fine-tune the model
on a small-scale robot manipulation dataset with robot

>
Pick up the milk and
put it in the sink

From authors, “We
broadly refer to
models having gone
through latent
pretraining as
LAPA”.

Vision
Encoder

to learn the mapping from the latent actions to robot

actions
action
MLP-AH
Text
Encoder

Discard the latent action
head (a single MLP layer) and
replace it with a

to generate
ground truth actions

1
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Experiments: Datasets

Language Table

Language-Table is a suite of human-collected datasets and a multi-task continuous control benchmark for open
vocabulary visuolinguomotor learning.

o~

https://interactive-language.github.io

13



Experiments: Datasets

SimplerEnv: Simulated Manipulation Policy Evaluation
Environments for Real Robot Setups

CC Open in Colab

RT-1 RT-1-X RT-2-X Octo

Real robot evaluation (train on real, evaluate in real)

Cheap and scalable
Fully reproducible

Our simulated success rate

9 arXiv
https://arxivorg>cs 3

Evaluating Real-World Robot Manipulation Policies in .

— We identify control and visual disparities between real and

simulated environments as key challenges for reliable simulated evaluation.

Released: 05/24 14

https://simpler-env.github.io Citations: 19



Experiments: Datasets

Dataset Composition

To support broad generalization, we collected data for a wide range of tasks in many environments with
variation in objects, camera pose, and workspace positioning. Each trajectory is labeled with a natural
langauge instruction corresponding to the task the robot is performing.

* 60,096 trajectories

© 50,365 teleoperated demonstrations

© 9,731 rollouts from a scripted pick-and-place policy
® 24 environments
* 13 skills

Environments

The 24 environments inare grouped into 4 categories. The majority of the data comes from
7 distinct toy kitchens, which include some combination of sinks, stoves, and microwaves. The remaining
environments come from diverse sources, including various tabletops, standalone toy sinks, a toy laundry
machine, and more.

Tabletops
(12,290)

=\ Other (1,917)

laundry_machine -/ —;
\

mymﬁuz = Toy Sinks (3,102)

Toy Kitchens
(33,111)

https://rail-berkeley.github.io/bridgedata
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https://rail-berkeley.github.io/bridgedata

Experiments: Setups

440K Real world trajectories 4 diff eval tasks

BridgeData V2

Put Carrot on Plate Put Spoon on Towel

181K
Simulation
trajectories

Stack Cubes Put Eggplant in Basket

(a) LANGUAGE TABLE @ (b) SIMPLER @

(c) REAL

Figure 3: Experimental Setups. (a) shows an example from the 440k real-world trajectories (top) and the 181k
simulation trajectories (bottom) from the Language Table Benchmark. (b) shows the 4 different evaluation tasks
we use with the SIMPLER environment. (c) shows the four different tasks that we perform in the real-world.
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Pretraining & Finetuning Datasets

Table 1: Pretraining and fine-tuning dataset for each environment. Cross-Env denotes cross-environment,
Cross-Emb denotes cross-embodiment, and Multi-Emb denotes multi-embodiment. For fine-tuning, MT de-
notes multi-task training and MI denotes tasks with diverse multi-instructions. Category denotes the main
capability we are trying to quantify. Illustration of each environment is shown in Figure 3.

Esviicniant | Category | Pretraining Fine-tuning
| Dataset # Trajs | Dataset # Trajs

In-Domain | Sim (All 5 tasks) 181k 5 Tasks (MT, MI) 1k
LangTable Cross-Task | Sim (All 5 tasks) 181k 1 Task (MI) 7k
Cross-Env | Real (All 5 tasks) 442k 5 tasks (MT, MI) 1k
In-Domain Bridgev2 60k 4 Tasks (MT) 100
SIMPLER | oo Emb | Somethingv2 220k 4 Tasks (MT) 100
Cross-Emb Bridgev2 60k 3 tasks (MI) 450
Real-World Multi-Emb Open-X 970k 3 tasks (MI) 450
€ Cross-Emb Open-X 970k I task (MI, Bi-manual) 150
Cross-Emb Something v2 220k 3 tasks (MI) 450

17



Results

Table 2: Language Table Results. Average Success Rate (%) across the three different pretrain-finetune
combinations from the Language Table benchmark as described in Table 1. We also note the # of trajectories
used for fine-tuning next to each category. We report the performance for individual tasks in Appendix E.1.

In-domain (1k) Cross-task (7k) Cross-env (1k)

Seen Unseen Seen Unseen Seen Unseen
SCRATCH 156492 152483 2724136 2244110 15.6499 1524583
UNIPI 2201125 132477 20.81120 16.0191 13.6158.6 120475
VPT 440475 328446 720468 60.8166 18.0477 184497
LAPA 62.0&8.7 49-6&;9.5 73.2:1:6.8 548;t‘) 1 33-6&12.7 29.6112.0

ACTIONVLA  77.0435 58.846¢ 77.0435 588.6¢ 648150 54.0479

[ Scratch B OpenVLA (Bridge) EFE OpenVLA (OpenX)
EZZA ActionVLA (Bridge) EEE LAPA (Bridge) EES LAPA (OpenX)

Average Knock <object> Over Cover <object> with Towel Pick <object> and put in sink

Figure 5: Real-world Tabletop Manipulation Results. We evaluate on a total of 54 rollouts for each model
encompassing unseen object combinations, unseen objects and unseen instructions. Average success rate (%)
are shown. We provide detailed results depedning on the generalization type in Table 12 and individual results
in Appendix E.3.

AVG Success Rate (%)

ol 13
Scratch UniPi VPT LAPA ActionVLA

Figure 4: SIMPLER Results.
Avg. success rate (%) is shown
across 4 tasks. Detailed results
are in Appendix E.2.
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Results

N Scratch OpenVLA (Bridge) [ LAPA (Bridge) BN LAPA (Human Videos)
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Scratch UniPi  VPT  LAPA Average Knock Cover Pick and place

(a) SIMPLER Results (b) Real-world Tabletop Manipulation Robot Results

Figure 6: Pretraining from Human Video Results. Average success rate (%) of LAPA and baselines pre-
trained on human manipulation videos where the embodiment and environment gap is extreme. We evaluate on
both simulation (left) and real-world robot setup (right).

19



Latent Action Analysis

0 1 2

b i v W : ':,v 'l ‘:\4
Actions Forward Back Back Right Right Back Donot Forward
& Left & Left & Right Slightly Move

Figure 8: Latent Action Analysis in Language Table. We condition the current observation x; and quantized
latent action to the decoder of the latent action quantization model. We observe that each latent action can be
mapped into a semantic action. For example, latent action 0 corresponds to moving a bit left and forward.
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Latent Action Analysis

[2,3,6,6] [4,0,0,4] [4,2,0,0] [5,6,7,6] [5,7,0,5]

Camera View i Right, Down Up Down Up, Left

Figure 10: Latent Action Analysis in Human Manipulation Videos. We condition the current observation x1
and quantized latent action to the decoder of the latent action quantization model. We observe that each latent
action can be mapped into a semantic action including camera movements. For example, latent action [3,5,2,7]
corresponds to moving the camera a bit down while [4,2,0,0] corresponds to moving the camera slightly up.

Something-Something V2 dataset:

. . 21
https://www.qualcomm.com/developer/software/something-something-v-2-dataset



https://www.qualcomm.com/developer/software/something-something-v-2-dataset

Latent Action Analysis

[1,1,3,2] [3,2,0,1] [4,2,4,1] [5 1,2,7] [5,3,5,2] [6,7,0,2]

Actions Down, Left Right, Rotate Down Left, Rotate Up, Left

Figure 11: Latent Action Analysis in Multi-Embodiment Setting. We condition the current observation x;
and quantized latent action to the decoder of the latent action quantization model. We observe that each latent
action can be mapped into a similar semantic action even though the embodiments are different. For example,
latent action [1,1,3,2] corresponds to going down and left while [3,2,0,1] corresponds to going up a little bit.
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on Analysis
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Figure 12: Closed loop rollout of LAPA. LAPA is conditioned on current image x; and language instruction
of ‘take the broccoli out of the pot’. We generate rollout images by conditioning the decoder of Latent Action

Quantization Model with latent actions generated by LAPA.
Surprisingly can act as a potential world model

Patch Emb Patch Emb
Knock down
the water bottle
Spatial Spatial
Transformer Transformer
Causal Causal
Transformer Transformer
v v
Discretize Discretize
Pick up the milk and
Z 2 L | put it in the sink
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Limitations

LAPA underperforms compared to action pretraining when it
comes to fine-grained motion generation tasks like grasping.
Increasing the latent action generation space could help
address this issue.

Latency challenges during real-time inference. Adopting a
hierarchical architecture, where a smaller head predicts
actions at a higher frequency, could potentially reduce latency
and improve fine-grained motion generation.

The application of LAPA beyond manipulation videos, such as
those from self-driving cars, navigation, or landscape scenes
need to be explored.
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Takeaways

e Same as Mimic-Play

O

©)

Learning latent plans from human play data
significantly improves performance.

Latent plan pre-training benefits multi-task
learning.

e LAPA

O

@)

A scalable pretraining method for building VLAs
using actionless videos.

A state-of-the-art VLA model that surpasses
current models trained on 970K action-labeled
trajectories.

LAPA can be applied purely on human manipulation
videos, where explicit action information is absent,
and the embodiment gap is substantial.
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Questions?
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