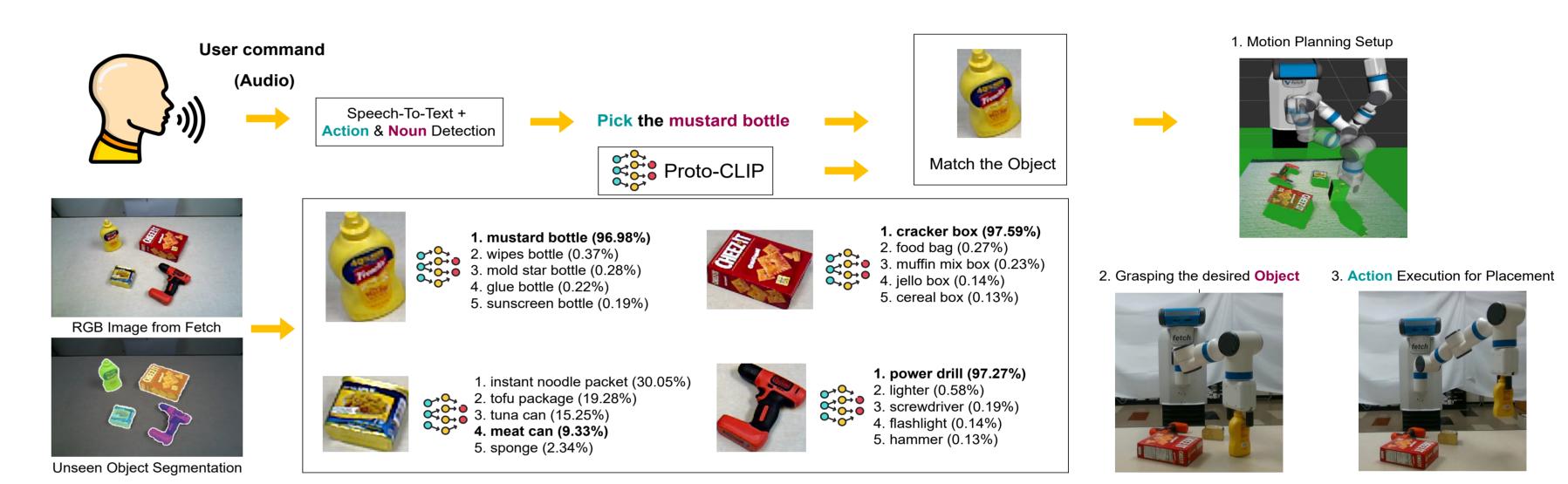

Goal: A robot should identity various (daily) objects in clutter scenes Our approach: Object Classification using Few-Shot Learning

Our Proposal

(b) Proto-CLIP Prototypes after Learning

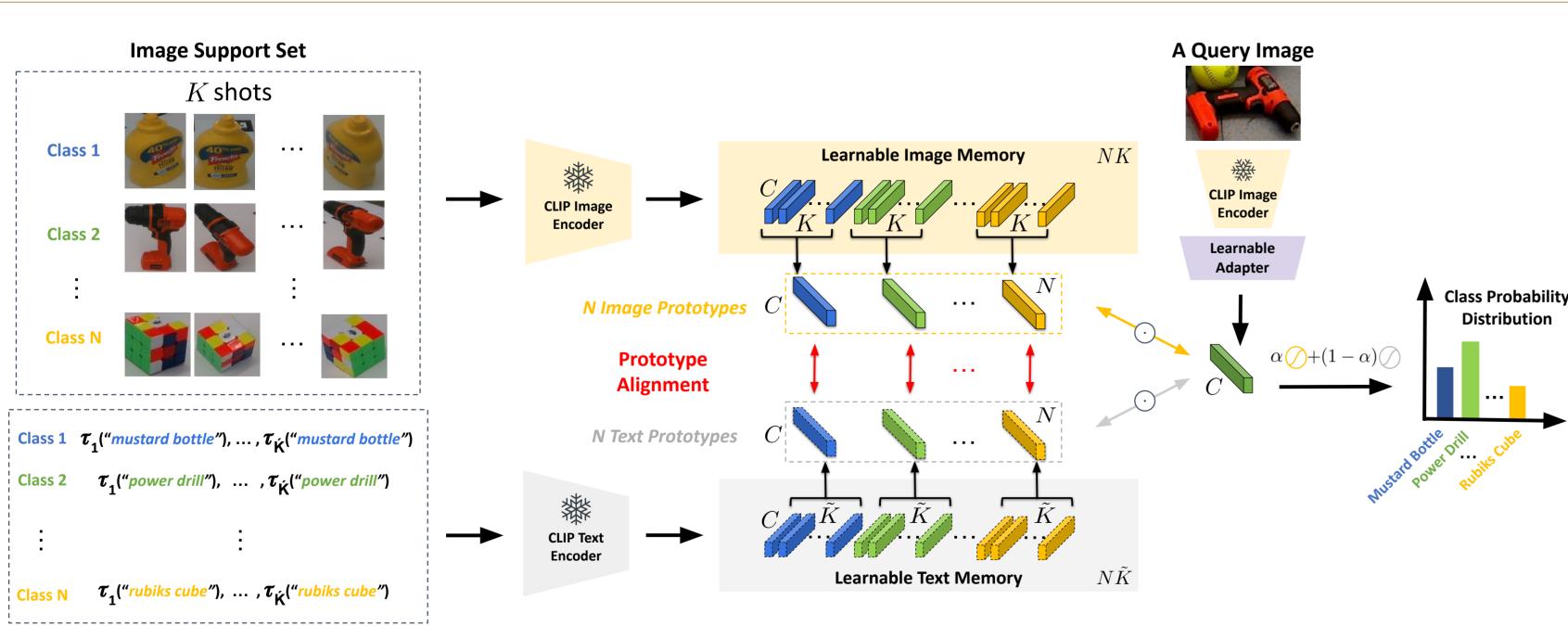
Barnes-Hut t-SNE visualization using the FewSOL-198 dataset. (a) Image and text prototypes from zero-shot CLIP, which are not aligned. (b) Aligned image and text prototypes from **Proto-CLIP-***F*.


Real World Use Case

Our proposed Proto-CLIP model learns a joint embedding space of images and text, where image prototypes and text prototypes are learned using support sets for few-shot classification.

Comparison with related works

Method	"Use Support Sets"	"Adapt Image Embedding"	"Adapt Text Embedding"	"Align Image & Text"
--------	--------------------	-------------------------	------------------------	----------------------


A real world use case of user command oriented grasping. Here, top-5 predictions from the **Proto-CLIP**-F (ViT-L/14) model trained on FewSOL-198 are shown. The Speech-To-Text is performed via OpenAI Whisper.

Results

Adapter	Train-Text-Memory	ImageNet	FGVC	Pets	Cars	EuroSAT	Caltech101	SUN397	DTD	Flowers	Food101	UCF101	FewSOL
MLP	×	61.06	35.31	85.61	72.19	83.47	92.58	68.54	63.89	95.01	74.05	76.16	28.65
MLP	\checkmark	61.06	37.56	85.72	73.61	83.53	92.13	69.71	63.89	96.06	74.05	76.16	32.87
2xConv	×	65.75	34.38	89.62	75.25	81.85	93.40	71.94	67.85	94.76	79.09	77.50	27.13
2xConv	\checkmark	58.60	35.82	89.21	74.34	81.78	93.02	69.79	67.32	95.82	78.06	76.37	27.13
3xConv	×	65.37	34.41	88.74	<u>75.25</u>	82.21	93.43	71.63	67.67	94.40	79.11	<u>77.50</u>	29.78
3xConv	\checkmark	59.63	36.15	87.93	72.68	81.57	92.74	68.64	68.56	95.78	78.61	77.03	35.22

Zero-shot CLIP	×	×	×	\checkmark
Linear-probe CLIP	\checkmark	\checkmark	×	×
СоОр	\checkmark	×	\checkmark	×
CLIP-Adapter	\checkmark	\checkmark	\checkmark	×
Tip-Adapter	\checkmark	\checkmark	\checkmark	×
Sus-X	\checkmark		×	×
Proto-CLIP (Ours)	\checkmark	\checkmark	\checkmark	\checkmark

Comparison of our proposed method with the existing CLIP-based few-shot learning methods. "Use Support Sets" indicates if a method uses support training sets for fine-tuning. "Adapt Image/Text Embedding" indicates if a method adapts the image/text embeddings obtained from CLIP. "Align Image and Text" indicates if a method *specifically* aligns images and text in the feature space.

Л			verview
VI	UU	IEI	verview

Results of the ablation study of various query adapters and textual memory bank training using the CLIP ResNet50 backbone with K = 16 on **Proto-CLIP**-F. In case of a tie, the underlined setup was selected randomly.

Loss	ImageNet	FGVC	Pets	Cars	EuroSAT	Caltech101	SUN397	DTD	Flowers	Food101	UCF101	FewSOL
\mathcal{L}_1	62.67	20.34	73.21	73.77	78.98	92.25	68.34	66.49	96.14	77.39	76.66	34.57
\mathcal{L}_2	62.29	4.71	0.00	0.00	38.95	0.28	66.93	67.38	10.31	77.71	57.41	32.70
\mathcal{L}_3	62.27	4.14	0.00	0.00	38.09	0.24	64.86	67.38	10.27	77.69	57.55	20.22
$\mathcal{L}_1 + \mathcal{L}_2$	65.39	36.24	88.58	75.39	82.78	93.71	71.65	68.09	96.06	78.69	77.29	33.48
$\mathcal{L}_2 + \mathcal{L}_3$	62.33	3.87	0.00	0.00	36.86	0.24	64.84	68.32	8.20	77.35	57.52	19.61
$\mathcal{L}_1 + \mathcal{L}_3$	65.43	36.84	88.58	75.51	82.84	93.35	71.44	68.32	96.14	78.80	77.53	33.43
$\mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$	65.75	37.56	89.62	75.25	83.53	93.43	71.94	68.56	96.06	79.09	77.50	35.22

Ablation study of various Loss functions using the CLIP ResNet50 backbone and K = 16. The best performing model architectures for each dataset from the previous table are used here.

Dataset	Method	1	2	Δ	8	16	32	64	Model	Adapter	тты			Backbo	one	
Dataset	Tip-Adapter	60.70	60.96		-	62.01	62.51	62.88	Model	Auapter		RN50	RN101	ViT-B/16	ViT-B/32	ViT-L/14
	Proto-CLIP							63.23	Zero-Shot-CLIP	-	-	25.91	32.96	40.70	41.87	54.57
lmo collot			61.69					67.96	Tip-Adapter	_	-	29.74	37.43	47.00	41.48	56.78
ImageNet	Tip-Adapter-F					65.51			Tip-Adapter-F	-	-	32.52	41.43	50.17	45.48	60.17
	Proto-CLIP - F		60.64					65.36	Proto-CLIP-F	MLP	X	33.48	39.04	47.96	41.91	58.65
	Proto-CLIP- <i>F</i> - <i>Q</i> ^{<i>T</i>}				64.03		66.71	66.90	Proto-CLIP- <i>F</i>	MLP	1	34.83	40.74	47.43	42.13	58.91
	Tip-Adapter		26.22		29.22	28.87	×	×	Proto-CLIP- <i>F</i>	2xConv	×	35.04	41.04	50.83	46.52	63.74
	Proto-CLIP		28.35			29.96	×	×	Proto-CLIP - <i>F</i>	2xConv	1	35.04	42.52	49.26	43.43	61.61
FewSOL-52	Tip-Adapter-F	27.91	27.43	29.13	32.43	34.04	×	×	Proto-CLIP - <i>F</i>	3xConv	X	34.13	42.83	51.91	46.87	62.35
	Proto-CLIP- <i>F</i>	22.22	26.17	27.09	33.26	35.22	×	×	Proto-CLIP - <i>F</i>				44.09	50.39	46.57	60.39
	Proto-CLIP - F - Q^T	21.65	25.91	30.30	32.70	34.70	×	×								
	Chata ablation no	Г Г		10			,		Backbone abla [.]	tion study	y. Data	set = Fe	ewSOL-!	52. $K = 16$	D.	

Shots ablation results. Backbone='CLIP ResNet50'

TTM='Train-Text-Memory'.

Out of Distribution (OOD)

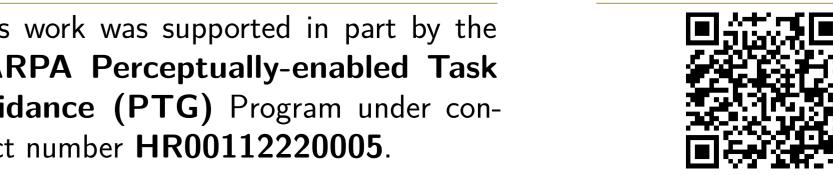
Limitations and Future Work

Text Support Set

🕐 Distance 🛛 🖉 Softmax 🛛 🗱 Model Frozen

Overview of our proposed **Proto-CLIP** model. The image memory, the text memory and the adapter network are learned. Given a class name, τ_i returns the i^{th} out of \tilde{K} predefined text prompts.

Two designs of the adapters.(a) A Multi-layer perceptron-based adapter as in CLIP-Adapter. (b) A convolution-based adapter that we introduce. The feature dimension is for CLIP ResNet50 backbone.


Datasets	ImageNet	-V2	
Zara Shat CLID		- v Z	-Sketch
Zero-Shot-CLIP	60.33	53.27	35.44
_inear Probe CLIP	56.13	45.61	19.13
CoOp	62.95	54.58	31.04
CLIP-Adapter	63.59	55.69	35.68
Гір	62.03	54.60	35.90
Гір-F	65.51	57.11	36.00
Proto-CLIP	62.77	55.23	35.62
Proto-CLIP-F	65.75	56.84	35.29
Proto-CLIP- F - Q^T	65.91	57.32	35.99

Challenges in extreme low-shot scenarios ($K \leq 2$) Requires hyperparameter tuning for each specific dataset and backbone. uture work will focus on enhancing feature representation learning beyond urrent CLIP models. One potential avenue is adapting more powerful ision-language models like GPT variants. The FewSOL dataset also offers nultiview and depth information about objects, making 3D exploration in ew-shot object recognition a promising direction.

Acknowledgments

number HR00112220005.

Scan Me!

jishnujayakumar.github.io

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024