Proto-CLIP: Vision-Language Prototypical Network for Few-Shot Learning

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems

Motivation: Few-shot object classification in cluttered robotic environments

A sample robotics environment

Clutter Scene

Goal: A robot should identity various (daily) objects in clutter scenes **Our approach: Object Classification using Few-Shot Learning**

Motivation: Few-shot object classification in cluttered robotic environments

	OCID (Real) [10]										
	Mathod	Use GT s	egmentation (#classes,	#objects)	Use segmentation from [31] (#classes, #objects)						
	Michiod	All (52, 2300)	Unseen (41, 1598)	Seen (11, 702)	All (52, 2300)	Unseen (41, 1598)	Seen (11, 702)				
		Clean S	Clean S	Clean S	Clean S	Clean S	Clean S				
		Training setting:	clean support set with	pre-training (top-	, top-5)						
14	k-NN [22]	14.65, 25.22	15.33, 24.41	41.03, 72.65	12.70, 23.22	13.70, 22.59	36.75, 67.95				
V	Finetune [22]	22.26, 50.17	26.41, 58.20	31.62, 80.34	21.30, 48.57	24.34, 53.94	35.47, 67.38				
	ProtoNet [27]	25.17, 57.30	25.22, 58.45	51.99, 94.73	22.96, 51.96	22.65, 54.32	49.86, 87.75				
	MatchingNet [12]	17.39, 48.35	14.64, 50.06	51.85, 90.31	15.78, 45.13	13.08, 46.93	49.15, 84.47				
	fo-MAML [9]	11.43, 31.48	11.58, 34.73	36.89, 69.94	10.91, 29.17	10.01, 32.35	31.77, 63.68				
	fo-Proto-MAML [22]	14.35, 28.96	5.63, 40.61	45.58, 71.51	13.39, 26.96	5.51, 37.73	41.74, 67.24				
	CTX [29]	17.48, 46.57	18.21, 49.81	51.85, 87.75	15.70, 43.83	16.90, 46.31	47.86, 81.34				
	CTX+SimCLR [29]	18.57, 50.30	20.46, 51.06	57.55, 93.16	16.48, 46.17	17.71, 47.12	52.14, 85.75				
	Training setting: cluttered support set with pre-training (top-1, top-5)										
	k-NN [22]	13.70, 23.83	15.33, 24.28	47.72, 72.79	13.26, 23.22	14.14, 22.90	44.73, 68.66				
V	Finetune [22]	22.17, 53.35	24.34, 55.63	31.91, 71.51	18.26, 44.22	20.65, 52.00	36.04, 69.52				
•	ProtoNet [27]	21.35, 50.57	22.34, 51.31	51.99, 90.46	18.61, 47.22	18.21, 48.12	45.44, 85.33				
	MatchingNet [12]	17.52, 50.96	17.77, 52.32	49.43, 88.18	16.52, 46.52	15.58, 48.81	43.45, 82.76				
-	fo-MAML [9]	16.48, 38.52	13.70, 39.49	37.46, 77.07	15.35, 35.04	11.08, 34.36	40.31, 69.94				
	fo-Proto-MAML [22]	11.04, 28.70	4.01, 38.67	43.73, 72.65	9.91, 26.35	3.57, 35.79	40.46, 68.09				
	CTX [29]	19.00, 45.48	17.71, 44.74	51.85, 88.75	17.13, 42.22	16.08, 42.12	47.15, 83.19				
	CTX+SimCLR [29]	24.61, 62.39	25.16, 63.52	65.81, 96.30	22.17, 57.43	23.28, 57.57	59.12, 88.32				
		Us	sing pre-trained CLIP i	models [35]							
	Few-shot Tip-Adapter ViT-L/14-Finetune [36]	60.17, 83.04	59.64 , 85.17	85.75, 99.00	54.87, 78.91	56.07, 80.29	79.20, 91.88				
	Few-shot Tip-Adapter ViT-L/14 [36]	56.78, 83.22	55.38, 84.86	86.89, 98.58	52.35, 76.26	51.69, 79.04	80.06, 92.45				
V + I	Zero-shot CLIP ViT-L/14 [35]	54.57, 84.74	55.94, 87.92	83.62, 98.58	50.43, 78.52	52.07, 81.54	75.07, 92.17				
	Zero-shot CLIP ViT-B/32 [35]	41.87, 75.26	41.30, 77.91	78.06, 97.58	39.83, 69.43	39.17, 72.09	70.66, 90.88				
	Zero-shot CLIP ViT-B/16 [35]	40.70, 73.96	40.24, 76.03	76.50, 95.73	39.35, 68.83	38.61, 70.15	70.66, 88.89				
	Zero-shot CLIP RN50x64 [35]	42.96, 75.83	43.62, 77.41	76.64, 96.01	40.04, 70.87	41.74, 72.22	69.94, 90.46				
	Zero-shot CLIP RN50x16 [35]	38.52, 73.04	40.11, 75.72	79.49, 96.30	35.65, 67.30	37.30, 69.77	70.94, 89.74				
	Zero-shot CLIP RN50x4 [35]	35.96, 68.52	34.42, 70.03	73.93, 95.73	34.00, 63.78	32.48, 65.46	67.95, 88.60				
	Zero-shot CLIP ResNet-101 [35]	32.96, 68.30	32.67, 69.52	77.49, 96.87	31.09, 63.87	31.85, 65.96	69.66, 89.74				
	Zero-shot CLIP ResNet-50 [35]	25.91, 58.43	29.04, 64.39	61.40, 93.16	24.70, 55.61	28.04, 61.20	57.69, 86.47				

Observation: Vision+Language models (CLIP and it's related work) outperform the existing few shot vision only methods

J. J. P. et al., "FewSOL: A Dataset for Few-Shot Object Learning in Robotic Environments," ICRA, London, 2023.

Our Idea

Our proposed Proto-CLIP model learns a *joint embedding space of images and text*, where *image prototypes* and *text prototypes* are learned using *support sets* for few-shot classification.

Related Vs Ours

Zhang et. al. Tip-Adapter: Training-Free Adaption of CLIP for Few-Shot Classification. In Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel

Method	Use Support Sets	Adapt Image Embedding	Adapt Text Embedding	Align Image and Text
Zero-shot CLIP [1]	×	×	×	1
Linear-probe CLIP [1]	1	~	×	×
CoOp [8]	1	×	1	×
CLIP-Adapter [9]	1	1	1	×
Tip-Adapter [10]	1	1	×	×
PROTO-CLIP (Ours)	1	1	1	1

Model Overview

Overview of our proposed Proto-CLIP model. The CLIP image encoder and text encoder are frozen during training 3. The image memory, the text memory and the adapter network are learned .

Barnes-Hut t-SNE visualization using the FewSOL dataset

(a) Image and text prototypes from zero-shot CLIP, which are not aligned.

(b) Aligned image and text prototypes from Proto-CLIP-F.

Few-shot classification results on different datasets using the ResNet50 backbone

Dataset	ImageNet	FGVC	Pets	Cars	EuroSAT	Caltech101	SUN397	DTD	Flowers	Food101	UCF101	FEWSOL
# classes	1,000	100	37	196	10	100	397	47	102	101	101	52
Zero-shot CLIP [1]	60.33	17.10	85.83	55.74	37.52	85.92	58.52	42.20	66.02	77.32	61.35	25.91
					1	shots						
Linear-Probe CLIP [1]	22.07	12.89	30.14	24.64	51.00	70.62	32.80	29.59	58.07	30.13	41.43	-
CoOp [8]	57.15	9.64	85.89	55.59	50.63	87.53	60.29	44.39	68.12	74.32	61.92	-
CLIP-A [9]	61.20	17.49	85.99	55.13	61.40	88.60	61.30	45.80	73.49	76.82	62.20	
Tip [10]	60.70	19.05	86.10	57.54	54.38	87.18	61.30	46.22	73.12	77.42	62.60	27.30
Tip-F [10]	61.13	20.22	87.00	58.80	59.53	89.33	62.50	49.65	79.98	77.51	64.8/	27.91
PROTO-CLIP	60.31	19.59	86.10	57.29	55.55	87.99	60.81	46.04	/6.98	77.30	63.15	27.09
PROTO-CLIP-F	60.32	19.50	85.72	57.34	54.93	88.07	60.83	35.64	11.41	77.34	63.07	22.22
PROTO-CLIP-F-Q*	59.12	16.26	83.62	52.77	61.95	88.48	61.43	32.27	68.53	75.16	62.44	21.65
Linne Decks CLID (1)	21.05	17.05	42.47	26.52	(1.50	shots	44.44	20.49	72.25	42.70	62.65	
C-O- [9]	51.95	17.85	43.47	50.33	01.58	18.12	44.44	39.48	73.53	42.79	33.33	-
	61.52	18.68	86.72	59.74	62.00	81.93	62.20	45.15	91.61	77.22	67.12	-
CLIP-A [9] Tie [10]	60.06	20.10	80.73	57.02	61.69	89.37	63.29	31.48	70.12	77.52	64.74	26.22
Tip F [10]	61 69	21.21	87.03	61 50	66 15	89 74	63.64	53 72	82.30	77 81	66.43	20.22
PROTO CLIP	60.64	22.14	87 38	60.01	64 80	89.05	63 12	51.06	82.30	77.34	67.46	27.45
PROTO-CLIP	60.64	22.14	07.30	60.01	64.89	89.00	63.20	40.99	03.39	77.34	67.40	26.35
PROTO-CLIP-F	60.49	22.14	07.30	60.04	62.50	89.09	65.20	49.00	91.20	76.15	69.93	25.01
PROTO-CLIP-F-Q	00.48	20.01	83.28	00.02	03.39	89.49 shote	05.40	45.69	81.20	/0.15	08.80	25.91
Linear Proba CLIP [1]	41.20	22 57	56.25	48.42	68 27	84.34	54.50	50.06	84.80	55.15	62.23	
CoOn [8]	50 00	21.87	86.70	62.62	70.18	89.55	63.47	53.40	86.20	73 33	67.03	
CLIP-A [9]	61.84	22 50	87.46	62.45	73 38	80.08	65.96	56.86	87.17	77 92	69.05	-
Tin [10]	60.98	22.41	86.45	61.45	65 32	80 30	64.15	53.06	83.80	77 54	66.46	28 70
Tip-F [10]	62.52	25.80	87.54	64 57	74.12	90.56	66.21	57.39	88.83	78 24	70.55	29.13
PROTO-CLIP	61.30	23.25	87 19	63 33	68 67	89 57	65 51	55.91	88 23	77 58	69.50	29.13
PROTO-CLIP-F	61.30	23.31	86.95	63.34	68.52	89.62	65.57	57.21	88.27	77.58	69.55	27.09
PROTO-CLIP-F-OT	61.80	27.63	87.11	66.24	80.64	91.81	68.09	56.86	89.85	76.94	70.16	30.30
					8	shots	00107	2 010 0				
Linear-Probe CLIP [1]	49.55	29.55	65.94	60.82	76.93	87.78	62.17	56.56	92.00	63.82	69.64	-
CoOp [8]	61.56	26.13	85.32	68.43	76.73	90.21	65.52	59.97	91.18	71.82	71.94	-
CLIP-A [9]	62.68	26.25	87.65	67.89	77.93	91.40	67.50	61.00	91.72	78.04	73.30	-
Tip [10]	61.45	25.59	87.03	62.93	67.95	89.83	65.62	58.63	87.98	77.76	68.68	29.22
Tip-F [10]	64.00	30.21	88.09	69.25	77.93	91.44	68.87	62.71	91.51	78.64	74.25	32.43
PROTO-CLIP	62.12	27.63	88.04	64.93	69.42	90.22	67.37	59.34	92.08	77.90	71.08	29.83
PROTO-CLIP-F	63.92	31.32	88.55	70.35	78.94	92.54	69.59	62.35	93.79	78.29	74.81	33.26
PROTO-CLIP-F-QT	64.03	35.82	87.46	71.50	81.89	92.62	70.02	64.01	94.28	78.61	75.34	32.70
			7 (D230)		1	5 shots	5 (5 (S (S (S (S (S (S (S (S (S			LONG STR	// #0107700	
Linear-Probe CLIP [1]	55.87	36.39	76.42	70.08	82.76	90.63	67.15	63.97	94.95	70.17	73.72	-
CoOp [8]	62.95	31.26	87.01	73.36	83.53	91.83	69.26	63.58	94.51	74.67	75.71	-
CLIP-A [9]	63.59	32.10	87.84	74.01	84.43	92.49	69.55	65.96	93.90	78.25	76.76	
Tip [10]	62.02	29.76	88.14	66.77	70.54	90.18	66.85	60.93	89.89	77.83	70.58	28.87
Tip-F [10]	65.51	35.55	89.70	75.74	84.54	92.86	71.47	66.55	94.80	79.43	78.03	34.04
PROTO-CLIP	62.77	29.67	88.61	68.11	72.95	91.08	68.09	61.64	92.94	78.11	73.35	29.96
PROTO-CLIP-F	65.75	37.56	89.62	75.25	83.53	93.43	71.94	68.56	95.78	79.09	77.50	35.22
PROTO-CLIP- $F-Q^T$	65.91	40.65	89.34	76.76	86.59	93.59	72.19	68.50	96.35	79.34	78.11	34.70

Proto-CLIP performs poorly in low shots setting but as shots increase the performance improves w.r.t. to other baseline models.

Ablation Study: Adapter vs Dataset

Adapter	Train-Text-Memory	ImageNet	FGVC	Pets	Cars	EuroSAT	Caltech101	SUN397	DTD	Flowers	Food101	UCF101	FewSOL
MLP	×	61.06	35.31	85.61	72.19	83.47	92.58	68.54	63.89	95.01	74.05	76.16	28.65
MLP	1	61.06	37.56	85.72	73.61	83.53	92.13	69.71	63.89	96.06	74.05	76.16	32.87
2xConv	×	65.75	34.38	89.62	75.25	81.85	93.40	71.94	67.85	94.76	79.09	77.50	27.13
2xConv	1	58.60	35.82	89.21	74.34	81.78	93.02	69.79	67.32	95.82	78.06	76.37	27.13
3xConv	×	65.37	34.41	88.74	75.25	82.21	93.43	71.63	67.67	94.40	79.11	77.50	29.78
3xConv	1	59.63	36.15	87.93	72.68	81.57	92.74	68.64	68.56	95.78	78.61	77.03	35.22

Observation:
Different datasets
behave differently on various adapters

Ablation Study: Loss vs Dataset

Loss	ImageNet	FGVC	Pets	Cars	EuroSAT	Caltech101	SUN397	DTD	Flowers	Food101	UCF101	FEWSOL
\mathcal{L}_1	62.67	20.34	73.21	73.77	78.98	92.25	68.34	66.49	96.14	77.39	76.66	34.57
\mathcal{L}_2	62.29	4.71	0.00	0.00	38.95	0.28	66.93	67.38	10.31	77.71	57.41	32.70
\mathcal{L}_3	62.27	4.14	0.00	0.00	38.09	0.24	64.86	67.38	10.27	77.69	57.55	20.22
$\mathcal{L}_1 + \mathcal{L}_2$	65.39	36.24	88.58	75.39	82.78	93.71	71.65	68.09	96.06	78.69	77.29	33.48
$\mathcal{L}_2 + \mathcal{L}_3$	62.33	3.87	0.00	0.00	36.86	0.24	64.84	68.32	8.20	77.35	57.52	19.61
$\mathcal{L}_1 + \mathcal{L}_3$	65.43	36.84	88.58	75.51	82.84	93.35	71.44	68.32	96.14	78.80	77.53	33.43
$\mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$	65.75	37.56	89.62	75.25	83.53	93.43	71.94	68.56	96.06	79.09	77.50	35.22

L1 := Classification Loss

L2 := Image Prototype to Text Prototype Distance Loss L3 := Text Prototype to Image Prototype Distance Loss

Observation: 🔄 Overall, all three losses 🛝 are required to achieve better performance 🚀.

Ablation Study: Different CLIP Backbones

Model	Adapter	TextM	Backbone						
Widder	Adapter	ICAUVI	RN50	RN101	ViT-B/16	ViT-B/32	ViT-L/14		
Zero-Shot-CLIP [1]	-		25.91	32.96	40.70	41.87	54.57		
Tip [10]	-	- 1	29.74	37.43	47.00	41.48	56.78		
Tip-F [10]	-	-	32.52	41.43	50.17	45.48	60.17		
PROTO-CLIP-F	MLP	×	33.48	39.04	47.96	41.91	58.65		
PROTO-CLIP- F	MLP	1	34.83	40.74	47.43	42.13	58.91		
PROTO-CLIP-F	2xConv	×	35.04	41.04	50.83	46.52	63.74		
PROTO-CLIP-F	2xConv	1	35.04	42.52	49.26	43.43	61.61		
PROTO-CLIP-F	3xConv	×	34.13	42.83	51.91	46.87	62.35		
PROTO-CLIP- F	3xConv	1	35.22	44.09	50.39	46.57	60.39		

Observation: 🚀 Bigger Vision Transformers deliver superior performance 🌟

Ablation Study: Out of Distribution (OOD)

Datacate	Source	Target			
Datasets	ImageNet	-V2 [5]	-Sketch [6]		
Zero-Shot-CLIP	60.33	53.27	35.44		
Linear Probe CLIP	56.13	45.61	19.13		
CoOp	62.95	54.58	31.04		
CLIP-Adapter	63.59	55.69	35.68		
Tip	62.03	54.60	35.90		
Tip-F	65.51	57.11	36.00		
Proto-CLIP	62.77	55.23	35.62		
Proto-CLIP-F	65.75	56.84	35.29		
Proto-CLIP- F - Q^T	65.91	57.32	35.99		

Observation: 🏆 Performs on par with the previous best Tip-A for out-of-distribution (OOD) datasets 🌍.

Real World Use Case

Joint Object Segmentation and Few-Shot Classification (JOS+FSC) with Object Grasping

 $_{
m em}$ The Fetch robot picks up the object commanded by a user, using classification results from Proto-CLIP 🧠 🔍

Real world: 8 sets, each containing 4 different real world objects

(a) Set-1; mustard_bottle, water_bottle, jello_box, soup_can

(c) Set-3; cup, jello_box, meat_can, clock

(e) Set-5; keyboard, game_controller, hand_sanitizer, mouse

(g) Set-7; key, pen, book, headphone

(b) Set-2; soft_scrub_cleanser_bottle, tennis_ball, ball, cracker_box

(d) Set-4; tuna_can, air_duster_can, marker, knife

(f) Set-6; wood_block, folder, sticky_notes, stapler

(h) Set-8; mug, charger, cellphone, spoon

RGB Image from Fetch

Segmented Objects

Fillo 2. palmolive bottle (0.45%) 3. toothpaste (0.28%) 4. honey bottle (0.23%) 5. soup can (0.22%)

1. soup can (76.25%) 2. pepper sprinkler (2.82%) 3. tuna can (2.73%) 4. soda can (2.33%) 5. can opener (1.94%)

True: water bottle 1. cellphone (29.52%) 2. marker (6.63%) 3. battery (4.87%) 4. cream tube (4.8%) 5. flashlight (4.61%)

True: mustard bottle

RGB Image from Fetch

Segmented Objects

-

1. cracker box (92.96%) 2. food bag (0.53%) 3. cereal box (0.33%) 4. jello box (0.26%) 5. milk box (0.25%)

True: tennis ball 1. ball (31.39%) 2. golf ball (14.79%) 3. cream tube (14.37%) 4. lego block (6.05%) 5. pen (4.91%)

1. lime (37.67%) 2. ball (28.34%) 3. golf ball (9.76%) 4. apple (2.05%) 5. tennis ball (1.44%)

Few-shot-classification

Few-shot-classification

RGB Image from Fetch

Segmented Objects

1. 2. 3. 8.7.6.5 4. 5.

1. clock (70.7%) 2. timer (18.44%) 3. watch (0.61%) 4. folder (0.52%) 5. baseball ball (0.35%)

1. jello box (91.03%) 2. hand sanitizer (0.81%) 3. food storage container (0.56%) 4. knife (0.45%) 5. soup can (0.44%) 1. coffee bottle (38.52%) 2. water bottle (14.93%) **3. cup (13.22%)** 4. soda can (6.29%) 5. camera (1.9%)

Few-shot-classification

RGB Image from Fetch

Segmented Objects

Few-shot-classification

RGB Image from Fetch

Segmented Objects

1. mouse (89.67%) 2. headphone (1.26%) 3. adapter cable (0.68%) 4. keyboard (0.56%) 5. charger (0.44%)

1. keyboard (71.52%) 2. game controller (6.37%) 3. remote controller (3.86%) 4. shoe (1.08%) 5. key (0.95%)

True: hand sanitizer

2. salt bottle (8.52%)

4. glue stick (7.88%)

3. cream tube (8.39%)

5. spray bottle (3.67%)

1. shampoo bottle (11.94%)

Few-shot-classification

RGB Image from Fetch

Segmented Objects

Few-shot-classification

RGB Image from Fetch

Segmented Objects

5. pitcher (1.48%)

Few-shot-classification

5. notebook (0.24%)

RGB Image from Fetch

Segmented Objects

Contributions

- We introduce Proto-CLIP, a new prototypical network that leverages large-scale vision-language models like CLIP <a>[]
- We've reported its performance across 12 diverse datasets and conducted real-world testing on a Fetch mobile manipulator a, where Proto-CLIP identifies and grasps objects in cluttered scenes > .
- Overall, Proto-CLIP excels in few-shot recognition compared to existing methods.

🙏 See you at Poster 4.05!