

Motivation

Goal: A robot should identity various (daily) objects in clutter scenes Our approach: Object Classification using Few-Shot Learning

	(real + synthetic)	objects	198 + 125	RGB-D	pprox27 + 10,234	object
-	Ours	Daily				class
	MSCOCO	Internet objects	80	RGB	pprox10,751	class
	Traffic Signs	Traffic signs	43	RGB	\approx 912	
	VGG Flower	Flowers	102	RGB	pprox81	
	Fungi	Fungal species	1394	RGB	pprox65	
	Quick Draw	Drawings	345	RGB	pprox146,164	
	Describable Texture	Textures	47	RGB	120	
	CUB-200-2011	Birds	200	RGB	\approx 59	
	Aircraft	Aircraft	100	RGB	100	
	ILSVRC-2012	WordNet synsets	1000	RGB	pprox8,004	
	mini-ImageNet	WordNet synsets	100	RGB	600	
-	Omniglot	Characters	1623	RGB	20	
-	Dataset	Class type	#classes	Image Type	#images_per_class	

Related versus Our Dataset

Comparison of our dataset with other datasets for few-shot learning in the literature. Our dataset contains daily objects in robot manipulation settings with both real and synthetic images and additional annotations other than object class label.

Dataset Construction: 1. Data Capture in the Real World

(a) Our data capture system with a Franka Emika Panda arm. (b) 9 images of a mustard bottle from different views captured in our dataset.

irvlutd.github.io/FewSOL

FewSOL: A Dataset for Few-Shot Object Learning in Robotic Environments

Jishnu Jaykumar P¹ Yu-Wei Chao² ¹The University of Texas at Dallas

Dataset Construction: 2. Data Annotation

1. What is the name of the object in these images? tape and tape holder, tape, support and adhesive tape

2. What is the category of the object in these images? stationary, stationery / adhesive tape

3. What is the object in these images made of? (list all materials of the object) plastic, paper, meta

4. What can be the object in these images used for? (list all function of the object) placing the tape, stick, wrap, separate

5. What is the color of the object in these images? (list all colors of the object) black, transparent, white, yellow

Our Amazon Mechanical Turk questionnaire for object annotation.

Dataset Construction: 3. Synthetic Data Generation

(a) Synthetic objects with clean background. (b) Synthetic objects in cluttered scenes.

Dataset Construction: 4. Pose and Segmentation Annotations

(a) Object poses from AR tags (b) Pixel correspondences using computed object poses and the segmentation masks of the objects.

Acknowledgments

This work was supported in part by the **DARPA Perceptually**enabled Task Guidance (PTG) Program under contract number **HR00112220005**.

Annotations class label ss label, segmentation a label, segmentation ct pose and attribute

Yu Xiang 1

²NVIDIA

Scan	me!
<u> </u>	

Experiments: Benchmarking using Meta-Dataset

Joint Object Segmentation and Few-Shot Classification

Method	OCID (Real)						
	Use GT segmentation (#classes, #objects) Use custom segmentation (#classes, #objects)						
	All (52, 2300)	Unseen (41, 1598)	Seen (11, 702)	All (52, 2300)	Unseen (41, 1598)	Seen (11, 702)	
	Clean S	Clean S	Clean S	Clean S	Clean S	Clean S	
Tra							
<i>k</i> -NN	14.65, 25.22	15.33, 24.41	41.03, 72.65	12.70, 23.22	13.70, 22.59	36.75, 67.95	
Finetune	22.26, 50.17	26.41 , 58.20	31.62, 80.34	21.30, 48.57	24.34 , 53.94	35.47, 67.38	
ProtoNet	25.17, 57.30	25.22, 58.45	51.99, 94.73	22.96, 51.96	22.65, 54.32	49.86, 87.75	
MatchingNet	17.39, 48.35	14.64, 50.06	51.85, 90.31	15.78, 45.13	13.08, 46.93	49.15, 84.47	
fo-MAML	11.43, 31.48	11.58, 34.73	36.89, 69.94	10.91, 29.17	10.01, 32.35	31.77, 63.68	
fo-Proto-MAML	14.35, 28.96	5.63, 40.61	45.58, 71.51	13.39, 26.96	5.51, 37.73	41.74, 67.24	
СТХ	17.48, 46.57	18.21, 49.81	51.85, 87.75	15.70, 43.83	16.90, 46.31	47.86, 81.34	
CTX+SimCLR	18.57, 50.30	20.46, 51.06	57.55 , 93.16	16.48, 46.17	17.71, 47.12	52.14 , 85.75	
Training setting: cluttered support set with pre-training (top-1, top-5)							
<i>k</i> -NN	13.70, 23.83	15.33, 24.28	47.72, 72.79	13.26, 23.22	14.14, 22.90	44.73, 68.66	
Finetune	22.17, 53.35	24.34, 55.63	31.91, 71.51	18.26, 44.22	20.65, 52.00	36.04, 69.52	
ProtoNet	21.35, 50.57	22.34, 51.31	51.99, 90.46	18.61, 47.22	18.21, 48.12	45.44, 85.33	
MatchingNet	17.52, 50.96	17.77, 52.32	49.43, 88.18	16.52, 46.52	15.58, 48.81	43.45, 82.76	
fo-MAML	16.48, 38.52	13.70, 39.49	37.46, 77.07	15.35, 35.04	11.08, 34.36	40.31, 69.94	
fo-Proto-MAML	11.04, 28.70	4.01, 38.67	43.73, 72.65	9.91, 26.35	3.57, 35.79	40.46, 68.09	
СТХ	19.00, 45.48	17.71, 44.74	51.85, 88.75	17.13, 42.22	16.08, 42.12	47.15, 83.19	
CTX+SimCLR	24.61, 62.39	25.16 , 63.52	65.81 , 96.30	22.17, 57.43	23.28 , 57.57	59.12 , 88.32	
	l	Jsing pre-trained CL	IP models				
Few-shot Tip-Adapter ViT-L/14-Finetune	60.17 , 83.04	59.64 , 85.17	85.75, 99.00	54.87, 78.91	56.07 , 80.29	79.20, 91.88	
Few-shot Tip-Adapter ViT-L/14	56.78, 83.22	55.38, 84.86	86.89 , 98.58	52.35, 76.26	51.69, 79.04	80.06, 92.45	
Zero-shot CLIP ViT-L/14	54.57, 84.74	55.94, 87.92	83.62, 98.58	50.43, 78.52	52.07, 81.54	75.07, 92.17	
Zero-shot CLIP ViT-B/32	41.87, 75.26	41.30, 77.91	78.06, 97.58	39.83, 69.43	39.17, 72.09	70.66, 90.88	
Zero-shot CLIP ViT-B/16	40.70, 73.96	40.24, 76.03	76.50, 95.73	39.35, 68.83	38.61, 70.15	70.66, 88.89	
Zero-shot CLIP RN50x64	42.96, 75.83	43.62, 77.41	76.64, 96.01	40.04, 70.87	41.74, 72.22	69.94, 90.46	
Zero-shot CLIP RN50x16	38.52, 73.04	40.11, 75.72	79.49, 96.30	35.65, 67.30	37.30, 69.77	70.94, 89.74	
Zero-shot CLIP RN50x4	35.96, 68.52	34.42, 70.03	73.93, 95.73	34.00, 63.78	32.48, 65.46	67.95, 88.60	
Zero-shot CLIP ResNet-101	32.96, 68.30	32.67, 69.52	77.49, 96.87	31.09, 63.87	31.85, 65.96	69.66, 89.74	
Zero-shot CLIP ResNet-50	25.91, 58.43	29.04, 64.39	61.40, 93.16	24.70, 55.61	28.04, 61.20	57.69, 86.47	

RGB image from Fetch

Segmented Objects

Real-world setting

Objects

Qualitative Results in the Real World

-0

1. jello_box

- 📷 🚮 3. muffin mix box
- 4. food_storage_container 5. wipes_bottle
 - 1. soup_can
 - ?. pepper_sprinkler
 - . meat_can
 - 4. wafer roll can
 - 5. tuna_can

4. cream_tube

True: water_bottle

- 5. basting_brush
- L. mustard_bottle
- 2. wipes_bottle 3. palmolive_bottle
- 4. soft_scrub_cleanser_bottle
- 5. rinse_aid_bottle
- Few-shot-classification

jishnujayakumar.github.io